A triangle ABC has vertices A(4,3), B(6,1) and C(-2,-3) as shown in the diagram. Find the equation of AM, the median from A.

3

4

part	marks	Unit	noi	n-calc	ca	alc	cal	c neut	Conte	nt Reference :	1.1
part	IIIai KS	Oilit	С	A/B	С	A/B	С	A/B	Main	Additional	1.1
											Source
1.	3	1.1					3		1.1.6	1.1.7	
											1998 P1 qu.1

•
1
 $M = (2,-1)$

$$\bullet^2$$
 $m_{AM}=2$

•
3
 $y-(-1)=2(x-2)$

Express $x^3 - 4x^2 - 7x + 10$ in its fully factorised form.

nont	monka	Unit	noi	n-calc	ca	ılc	cal	c neut	Conte	nt Reference :	2.1
part	marks	Omt	С	A/B	С	A/B	С	A/B	Main	Additional	~~
	4	2.1	4						2.1.3		Source
		·									1998 P1 qu.2

• 1 evaluating f(k) for any integer by any method

• quad factor e.g. $x^2 - 3x - 10$

• find 1 value of k s.t. f(k) = 0e.g. f(1) or f(-2) or f(5)

• (x-1)(x+2)(x-5)

$$p = i + j - k$$
, $q = i + 4k$ and $r = 4i - 3j$.

- (a) Express p q + 2r in component form.
- (b) Calculate p.r
- (c) Find $|\mathbf{r}|$.

3.1	nt Reference :	Conte	c neut	cal	ılc	ca	n-calc	noi	Unit	marks	port
3.1	Additional	Main	A/B	C	A/B	С	A/B	С	Ullit	marks	part
Source		3.1.1		2					3.1	2	(a)
1000 D1 av 2		3.1.9		1					3.1	1	(b)
1998 P1 qu.3		3.1.1		1					3.1	1	(c)

•¹
$$p = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, q = \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix}, r = \begin{pmatrix} 4 \\ -3 \\ 0 \end{pmatrix} s/i by •²$$

$$\bullet^2$$
 $\begin{pmatrix}
8 \\
-5 \\
-5
\end{pmatrix}$

The circle shown has equation

$$(x-3)^2 + (y+2)^2 = 25.$$

Find the equation of the tangent at the point (6, 2).

2.4	nt Reference :	Conte	c neut	cal	ılc	Ca	n-calc	noi	Unit	marks	nort
	Additional	Main	A/B	С	A/B	С	A/B	С	Ullit	IIIai KS	part
Source											
1998 P1 qu.4		2.4.4		4					2.4	4	
1											l

- Centre = (3,-2)
- $m_{rad} = \frac{4}{3}$
- $m_{tgt} = -\frac{3}{4}$
- $y-2=-\frac{3}{4}(x-6)$

2

The line AB is divided into 3 equal parts by the points C and D, as shown. A and B have coordinates (3, -1, 2) and (9, 2, -4).

- (a) Find the components of AB and AC.
- (b) Find the coordinates of C and D.

3.1	nt Reference :	Conte	c neut	cal	ılc	ca	n-calc	noi	Unit	marks	nort
3.1	Additional	Main	A/B	С	A/B	С	A/B	С	Onit	marks	part
Source		3.1.1		2					3.1	2	(a)
1998 P1 qu.5		3.1.1		2					3.1	2	(b)

•¹
$$\overrightarrow{AB} = \begin{pmatrix} 6 \\ 3 \\ -6 \end{pmatrix}$$

•³ $C = (5, 0, 0)$
•⁴ $D = (7, 1, -2)$

The functions f and g are defined on a suitable domain by $f(x) = x^2 - 1$ and $g(x) = x^2 + 2$.

(a) Find an expression for f(g(x)).

(b) Factorise f(g(x)).

nont	marks	Unit	no	n-calc	ca	ılc	cal	c neut	Conte	nt Reference :	1.2
part	marks	Onit	С	A/B	С	A/B	С	A/B	Main	Additional	1,7
(2)	9	1 9					9		1.2.6		Source
(b)	2	1.2					1	1	0.1		1998 P1 qu.6

$$-1$$
 $f(x^2+2)$

•¹
$$f(x^2+2)$$
 •³ $((x^2+2)+1)((x^2+2)-1)$ •³ x^4+4x^2+3
•² $(x^2+2)^2-1$ •⁴ $(x^2+3)(x^2+1)$

$$x^4 + 4x^2 + 3$$

$$\bullet^2 \qquad \left(x^2+2\right)^2-1$$

•4
$$(x^2+3)(x^2+1)$$

•4
$$(x^2+3)(x^2+1)$$

A and *B* are acute angles such that $\tan A = \frac{3}{4}$ and $\tan B = \frac{5}{12}$.

Find the exact value of

- (a) $\sin 2A$
- (b) $\cos 2A$
- (c) $\sin (2A + B)$.

nont	monka	Unit	noi	n-calc	ca	alc	cal	c neut	Conte	nt Reference :	2.3
part	marks	Unit	С	A/B	С	A/B	С	A/B	Main	Additional	۵.3
(a)	2	2.3	2						2.3.3		Source
(b)	1	2.3	1						2.3.3		1998 P1 qu.7
(c)	2	2.3	2						2.3.2		1990 1 1 qu.7

- $\sin A = \frac{3}{5}$ and $\cos A = \frac{4}{5}$ $\sin 2A = 2 \times \frac{3}{5} \times \frac{4}{5} = \frac{24}{25}$ (accept 0.96)
- $\sin 2A \cos B + \cos 2A \sin B$
- $\sin B = \frac{5}{13}$ and $\cos B = \frac{12}{13}$ and $\frac{323}{325}$
- •3 $\cos 2A = e.g. \left(\frac{4}{5}\right)^2 \left(\frac{3}{5}\right)^2 = \frac{7}{25} (accept \ 0.28)$

Two sequences are defined by these recurrence relations:

$$u_{n+1} = 3u_n - 0.4$$
 with $u_0 = 1$, $v_{n+1} = 0.3v_n + 4$ with $v_0 = 1$.

- (a) Explain why only one of these sequences approaches a limit as $n \to \infty$.
- (b) Find algebraically the exact value of the limit.
- (c) For the other sequence, find
 - the smallest value of n for which the n^{th} term exceeds 1000, and
 - (ii) the value of that term.

Content Reference : non-calc calc calc neut part marks 1.4 Unit C A/B A/B Main Additional A/B Source (a) 1 1.4 1 1.4.4 2 2 (b) 1.4 1.4.5 1998 P1 qu.8 (c) 1.4.3

- Only V_n has a limit because -1 < 0.3 < 1
- e.g. use L = aL + b

evaluate enough terms to exceed 1000

 $u_7 = 1749.8$

1

2

2

1

part	marke	Unit	noi	n-calc	ca	ılc	cal	c neut	Conte	nt Reference :	2.3
part	marks	Omt	С	A/B	С	A/B	С	A/B	Main	Additional	2.0
	4	2.3	4						2.3.1	1.2.1	Source
											1998 P1 qu.9

$$\bullet^1 \qquad \sin\left(2x - \frac{\pi}{6}\right) = \frac{1}{2}$$

Alternative for 2nd and 3rd marks

•¹
$$\sin(2x - \frac{\pi}{6}) = \frac{1}{2}$$

•² $2x - \frac{\pi}{6} = \frac{\pi}{6}, \frac{5\pi}{6} \text{ (accept } 30, 150)$
•³ $x = \frac{\pi}{6}, \frac{\pi}{2}$
•⁴ $x = \frac{7\pi}{6}, \frac{3\pi}{2}$

$$2x - \frac{\pi}{6} = \frac{\pi}{6}, \quad x = \frac{\pi}{6}$$

•3
$$x = \frac{\pi}{6}, \frac{\pi}{2}$$

•
$$2x - \frac{\pi}{6} = \frac{\pi}{6}, \quad x = \frac{\pi}{6}$$

• $2x - \frac{\pi}{6} = \frac{5\pi}{6}, \quad x = \frac{\pi}{2}$

•4
$$x = \frac{7\pi}{6}, \frac{3\pi}{2}$$

A curve, for which $\frac{dy}{dx} = 6x^2 - 2x$, passes through the point (-1, 2).

Express y in terms of x.

nont	manlra	I Imit	noi	n-calc	ca	ılc	cal	c neut	Conte	nt Reference :	2.2
part	marks	Unit	С	A/B	С	A/B	С	A/B	Main	Additional	~.~
	3	2.2	3						2.2.8		Source
Ĺ	J	2.2	,						2.2.0		1998 P1 qu.10

•
$$y = 2x^3 - x^2$$

•
$$y = 2x^3 - x^2$$

• $y = 2x^3 - x^2 + k$ and substituting

•
3
 $k = 5$

The diagram shows a sketch of the curve $y = x^3 + kx^2 - 8x + 3$. The tangent to the curve at x = -2 is parallel to the *x*-axis. Find the value of k.

nart	marks	Unit	noi	n-calc	ca	alc	cal	c neut	Conte	nt Reference :	1.3
part	IIIai KS	Omt	С	A/B	С	A/B	С	A/B	Main	Additional	1.0
											Source
-	4	1.3	4						1.3.4	1.3.7	4000 P4 44
											1998 P1 qu.11

$$x^2 + 2kx - 8$$

•1
$$\frac{dy}{dx} = \dots$$

•2 $3x^2 + 2kx - 8$
•3 $3x^2 + 2kx - 8 = 0$ when $x = -2$

•
4
 $k=1$

Evaluate
$$\int_{1}^{2} \left(x^{2} + \frac{1}{x}\right)^{2} dx.$$

	5

nont	monka	Unit	noi	n-calc	ca	ılc	cal	c neut	Conte	nt Reference :	2.2
part	marks	Omt	С	A/B	С	A/B	С	A/B	Main	Additional	
	5	2.2	5						2.2.4		Source
Ĺ.	3	ω.Δ	,						ω.ω.τ		1998 P1 qu.12

• know to expand brackets
•
$$x^4 + 2x + x^{-2}$$

• $\frac{1}{5}x^5 + x^2$

$$x^4 + 2x + x^{-2}$$

$$\frac{1}{5}x^5 + x^2$$

$$-\frac{1}{x}$$

•
$$9\frac{7}{10}$$

A sketch of the graph of the cubic function f is shown. It passes through the origin, has a maximum turning point at (a, 1) and a minimum turning point at (b, 0).

(a, 1)

(b) On a separate diagram sketch the graph of y = f'(x).

(c) The tangent to y = f(x) at the origin has equation $y = \frac{1}{2}x$. Use this information to write down the coordinates of a point on the graph of y = f'(x).

		1

3

2

4

7

1.2	nt Reference :	Conte	c neut	cal	ılc	ca	n-calc	noi	Unit	marke	port
1.2	Additional	Main	A/B	С	A/B	С	A/B	С	Unit	marks	part
Source		1.2.4		3					1.2	3	(a)
1998 P1 qu.13		1.2.4	2						1.2	2	(b)
1996 F1 qu.13		1.3.8	1						1.2	1	(c)

• clear evidence of reflection in y = 0

• 2 clear evidence of translation $\binom{0}{2}$ subsequent to a reflection

• indication of passing through (a,1) and (b,2)

• 4 roots at x = a and x = b

 parabolic shape with min. turning point between the roots and no other turning points

 \bullet^6 $\left(0,\frac{1}{2}\right)$

Differentiate $2\sqrt{x}(x+2)$ with respect to x.

part marks Unit C A/B C A/B C A/B Main Additional 1.3	nort	marks	Unit	noi	n-calc	ca	ılc	cal	c neut	Conte	nt Reference :	1.9
	part	marks	Omt	С	A/B	С	A/B	С	A/B	Main	Additional	1.3
. 4 1.3 4 1.3.4												Source
	1.	4	1.3	4						1.3.4		
1998 P1 qu.1												1998 P1 qu.14

$$e^2$$
 $2x^{\frac{3}{2}} + 4x^{\frac{1}{2}}$

•3
$$3x^{\frac{1}{2}}$$

•4
$$2x^{-\frac{1}{2}}$$

A sketch of part of the graph of $y = \sin 2x$ is shown in the diagram.

The points P and Q have coordinates (p, 0) and (q, -1).

- (a) Write down the values of p and q.
- (b) Find the area of the shaded region.

nont	monka	Unit	noi	n-calc	ca	ılc	cal	c neut	Conte	nt Reference :	3.2
part	marks	Omt	С	A/B	С	A/B	С	A/B	Main	Additional	J.2
(a)	1	1.2	1						1.2.3		Source
(b)	4	3.2	1	3					2.2.6	3.2.1	1998 P1 qu.15

•1
$$p = \frac{\pi}{2}$$
 and $q = \frac{3\pi}{4}$ •2 $\int_{\frac{\pi}{2}}^{\frac{3\pi}{4}} (\sin 2x) dx$
•3 $-\frac{1}{2}\cos 2x$
•4 $-\frac{1}{2}$
•5 deal with $-$ ve correctly giving $\frac{1}{2}$

Given $f(x) = (\sin x + 1)^2$, find the exact value of $f'(\frac{\pi}{6})$.

3

nont	monka	Linit	no	n-calc	ca	alc	cal	c neut	Conte	nt Reference :	3.2
part	marks	Unit	С	A/B	С	A/B	С	A/B	Main	Additional	0.2
	3	3.2		3					3.2.1	3.2.2	Source
Ĺ	3	0.2		· ·					0.2.1	0.2.2	1998 P1 qu.16

$$\bullet^1$$
 $2(\sin x + 1)$

Alternative

• 1 expand and differentiate $2 \sin x + 1$

 $e^2 \times \cos x$

• differentiate $\sin^2 x$

 $\bullet^3 \qquad \frac{3\sqrt{3}}{2}$

•3 $\frac{3\sqrt{3}}{2}$

After t seconds its height is h metres, where $h = 1.2 + 19.6t - 4.9t^2$.

(a) Find the speed of the ball after 1 second.

(b) For how many seconds is the ball travelling upwards?

3 2

1.3	nt Reference :	Conte	c neut	cal	ılc	ca	n-calc	noi	Unit	marks	nort
1.0	Additional	Main	A/B	С	A/B	С	A/B	С	Onit	marks	part
Source	1.3.6	1.3.5	2	1					1.3	3	(a)
1998 P1 qu.17	1.3.6	1.3.5	2						1.3	2	(b)

• 2 19.6 – 9.8t

 $\frac{dh}{dt} = 0$

 $^{-3}$ 9.8

•5 t = 2

Alternative

• *h*(*t*) is a parabola which is **symmetric** about its **maximum**

•5 (e.g.) $h(1) = 15 \cdot 9$, h(2) = 20.8, $h(3) = 15 \cdot 9$ so t = 2

- (a) Write the equation $\cos 2\theta + 8\cos \theta + 9 = 0$ in terms of $\cos \theta$ and show that, for $\cos \theta$, it has equal roots.
- (b) Show that there are no real real roots for θ .

3

calc Content Reference: non-calc calc neut 2.3 part marks Unit A/B A/B C A/B Main Additional Source 3 2.3 1 2 2.3.3 2.1.6 (a) (b) 1.2 1 1.2.1 1 1998 P1 qu.18

$$\bullet^1$$
 $2\cos^2\theta - 1 + 8\cos\theta + 9$

•
4
 cos $\theta = -2$ has no solution

$$\bullet^2 \qquad \qquad 2(\cos\theta + 2)^2 = 0$$

or "
$$b^2 - 4ac$$
" = $16 - 4 \times 1 \times 4$

• $\cos \theta = -2$ twice or " $b^2 - 4ac$ " = 0

nont	monka	Unit	noi	n-calc	ca	alc	cal	c neut	Conte	nt Reference :	3.3
part	marks	Omt	С	A/B	С	A/B	С	A/B	Main	Additional	0.0
	4	9.9	1	9					2 2 2	221224	Source
	4	3.3	1	3					3.3.3	3.3.1, 3.3.4	1998 P1 qu.19

- \bullet^1 $x = \log_5 12$
- 2 $5^x = 12$
- $\bullet^3 \qquad \log 5^x = \log 12$
- •4 $\frac{\log_{10} 12}{\log_{10} 5}$ or $\frac{\log_{e} 12}{\log_{e} 5}$ or $\frac{\log 12}{\log 5} = 1.54$